Класифікація формул логіки предикатів. Логічне слідування

Нова педагогіка » Особливості контролю знань логіки предикатів » Класифікація формул логіки предикатів. Логічне слідування

Сторінка 3

Легко тепер наповнити інтерпретацію, у якій формула перетворюється на хибне висловлення, конкретним змістом. Нехай М = {5,6}, а . Тоді , і. ◄[26, ст. 48]

Приклад 6. Встановити, чи виконувані формули логіки предикатів:

; e);

; f);

; g) ;

; h) .

а) Якщо формула має простий вигляд, то для доведення її виконуваності достатньо навести приклад хоча б однієї інтерпретації, у якій вона перетвориться на істинне висловлення. Щоб формула була істинним висловленням, потрібно щоб предикат був тотожно істинним. Наприклад, при , матимемо , тому формула виконувана. b) Інколи потрібно провести аналіз формули, щоб отримати протиріччя або підказку, якою має бути інтерпретація. Припустимо, що дана замкнута формула виконувана, тобто існує деякий двомісний предикат , визначений на множині М, що формулаперетворюється у істинне висловлення: .

Навішування квантора існування дає істинне висловлення, якщо предикат виконуваний. Тобто існує , що. Навішування квантора загальності по удає істинне висловлення, якщо предикат тотожно істинний. Це означає, що він повинен перетворюватися у істинне висловлення при довільних , а, отже, і при . А це неможливо, Бо . Припущення про те, що формула виконувана,

привело до протиріччя, отже, вона не виконувана і є суперечністю.с) Ця формула виконувана, оскільки вона виконувана у будь-якій інтерпретації з одноелементною множиною (див. приклад 5). d) Ця формула була б виконуваною, якби у деякій інтерпретації предикат був тотожно істинним. А це неможливо, оскільки при довільних значеннях з області інтерпретації висловлення. Отже, формула не виконувана. е) Нехай дана відкрита формула виконувана: існує предикат на множині М і елемент , що. Тоді за означенням кон’юнкції та . З другої умови випливає, що предикат тотожно істинний, тобто, перетворюється у істинне висловлення при всіх у, а, отже, і при , аз першої умови маємо . Отримали протиріччя, отже, формула не виконувана. f) Нехай формула виконувана, тобто існують предикати та , що . Це означає, що в області інтерпретації існує елемент х0, що висловлення, тобто предикат тотожно істинний. Тут нема протиріччя. Достатньо вибрати тотожно хибний предикат і буде тотожно істинним при довільному. Наприклад, при , визначених на множині дійсних чисел, та при довільному предикат В(у) тотожно істинний, бо при всіх матимем: . Отже, формула виконувана. g) Нехай виконувана: у деякій інтерпретації маємо

Страницы: 1 2 3 4 5 6 7 8

Рекомендуємо почитати:

Вплив творчості письменника на формування етичних відносин культури старших дошкільників
Знаменитого «Робінзона Крузо» Дефо створив вже в зрілому віці в 1719 році. За плечима було майже шістдесят років життя. «Пригоди Робінзона – схема дійсного життя – двадцяти восьми років, пр ...

Застосування цифрових навчальних засобів - важлива дидактична умова якісної організації навчання
Упровадження цифрових навчальних засобів в навчально-виховний процес, що багатьма дослідниками визначається як технологічна революція в освіті, почалося з розробки перших програм аудіовізуа ...

Труднощі навчання читання та письма турецькою мовою учнів початкової школи
Процес навчання читання та письма турецькою мовою на початковому етапі може ускладнюватися рядом об'єктивних та суб'єктивних факторів. До об’єктивних труднощів відносять труднощі орфографіч ...

Викладання іноземної мови

Викладання іноземної мови

У ДНЗ навчання дітей англійської мови доцільно розпочинати з п'ятилітнього віку. Більшість дітей цього віку досягають інтелектуальної, вольової, мотиваційної та емоційної готовності вивчати другу мову у колективі. >>>

Copyright © 2019 - All Rights Reserved - www.edudirect.net