Ступені і етапи роботи над задачами

Нова педагогіка » Методика роботи над простими задачами, що розкривають конкретний зміст арифметичних дій » Ступені і етапи роботи над задачами

Заработок на криптовалютах по сигналам. Больше 100% годовых!

Заработок на криптовалютах по сигналам

Трейдинг криптовалют на полном автомате по криптосигналам. Сигналы из первых рук от мощного торгового робота и команды из реальных профессиональных трейдеров с опытом трейдинга более 7 лет. Удобная система мгновенных уведомлений о новых сигналах в Телеграмм. Сопровождение сделок и индивидуальная помощь каждому. Сигналы просты для понимания как для начинающих, так и для опытных трейдеров. Акция. Посетителям нашего сайта первый месяц абсолютно бесплатно.

Обращайтесть в телеграм LegionCryptoSupport

Сторінка 2

4. Перевірка розв'язання є складовою частиною і характерною рисою математичної діяльності. Перевірити розв'язання задачі — це з'ясувати, правильне воно чи ні. Для вчителя цей процес є засобом виявлення прогалин у знаннях учнів, а в поєднанні з аналізом та оцінкою — засобом виховання інтересу до вивчення математики. Треба поступово виховувати в дітей почуття необхідності самоперевірки, ознайомлювати їх із найбільш доступними прийомами перевірки. З цією метою слід проводити бесіди, в яких аналізувати допущені учнями помилки.

У процесі розв'язування простих задач учні дістають деякі уявлення про структуру задачі. При цьому учителі пропонують деякі спеціальні запитання і завдання, проте вони здебільшого зводяться до вимоги розчленувати задачу на умову і запитання: повторення умови задачі, її запитання; читання задачі і виділення в ній запитання; читання умови задачі про себе, а вголос — тільки запитання; визначення, що в задачі відомо, а що невідомо. Щоб підкреслити основну відмінність складеної задачі від простої, ставлять, наприклад, такі запитання: Чи можна розв'язати задачу однією дією? Чому не можна розв'язати задачу однією дією? Яку маємо задачу — просту чи складену? Такі запитання корисні, але вони не охоплюють усіх компонентів поняття "задача". Роботу в цьому напрямку потрібно урізноманітнити.

Учні швидко усвідомлюють, що в арифметичній задачі має бути не менш як два числа. Проте іноді вони забувають про це намагаються розв'язати задачу тільки з одним числовий даним. З цією метою корисно також розглядати задачі з недостатньою кількістю даних.

У роботі над деякими задачами можна вказати прийоми, за допомогою яких з'ясовують, що числові дані задачі перебувають у певних зв'язках, а вибір їх визначається запитаннями. Для задач, пов'язаних різницевим або кратним відношенням, ці прийоми зводяться до постановки запитання: Що в задачі сказано про залежність між числами? Учні відповідають: "У задачі сказано, що друге число на 3 менше, ніж перше". До задач з пропорційними величинами ставлять узагальнені запитання: “Про що можна дізнатись, якщо відомі шлях і швидкість?” тощо.

У підручниках для початкових класів переважна більшість задач містить запитання зі словом "скільки", решта задач містить запитання із такими словами та виразами: “Чому дорівнює .?”, “Знайти .”, “Обчислити”. Кількість цих задач з кожним наступним кроком зростає, але за змістом вони належать до практичних задач. Це є однією з причин того, що вимогу задачі учні розуміють як речення, яке починається зі слова "скільки".

Щоб запобігти такому стереотипу, слід іноді перебудовувати запитання. Наприклад, замість "Скільки літрів бензину залишилося?" запитуємо "Яка остача бензину?" або "Знайти остачу бензину", "Чому дорівнює остача бензину?" Узагальнюючим словом тут є "остача". Запитання "Скільки учень заплатив за всю покупку?" можна перебудувати так: "Яка вартість всієї покупки?" або "Обчисліть вартість всієї покупки". Запитання без слова "скільки" пропонує вчитель, а перебудоване запитання, яке містить слово "скільки", формулюють учні .

Для розвитку уявлень учнів про структуру задачі дуже корисними є вправи на перетворення та складання задач. Для простих задач основними вправами є добір запитання до умови або добір умови до запитання. До творчих завдань належать: складання задач за даним розв’язком, за малюнком; порівняння задач; перетворення даної задачі в споріднену (в них величини пов'язані однаковою залежністю).

Свідоме вивчення математики і розвиток мислення учнів стимулюється самостійним складанням (конструюванням) математичних задач. При цьому, по-перше, виховується самостійність (діти оперують вивченими об'єктами і фактами математики, тобто розглядають та оцінюють властивості, відмінності і характерні особливості цих об'єктів); по-друге, розвивається їхня творча розумова активність.

Страницы: 1 2 3 4

Рекомендуємо почитати:

Педагогічні можливості засобів народного мистецтва
Історичний досвід українського народу має яскраве втілення в етнохудожніх цінностях, традиціях естетичного освоєння навколишньої дійсності. Все це зобов’язує національну школу „активно вико ...

Методика виявлення засобів музичної виразності в творах шкільного репертуару
Під час проходження практики, ми намагалися прищеплювати учням любов до музики, розвивати інтерес до неї, виховувати всебічно розвинену особистість в кожній дитині, зокрема, на уроках музик ...

План-конспект сучасного комбінованого уроку на тему «Антарктида й Антарктика. 7 клас»
Мета: ознайомити учнів з поняттям «Антарктика», загальними відомостями про Антарктиду – льодовий материк планети, особливостями водних мас Південного океану; забезпечити розуміння своєрідно ...

Викладання іноземної мови

Викладання іноземної мови

У ДНЗ навчання дітей англійської мови доцільно розпочинати з п'ятилітнього віку. Більшість дітей цього віку досягають інтелектуальної, вольової, мотиваційної та емоційної готовності вивчати другу мову у колективі. >>>

Copyright © 2021 - All Rights Reserved - www.edudirect.net