Метод Симпсона

Нова педагогіка » Розробка учбового матеріалу для викладання вищої математики на тему "Наближені методи обчислення визначених інтегралів" » Метод Симпсона

Сторінка 1

Якщо в квадратурній формулі Ньютона-Котеса (2.12) взяти то здобудемо таку формулу

(2.3.1)

За формулою (2.11) знаходимо . Врахувавши властивості коефіцієнтів Котеса, знаходимо .

Після підстановок знайдених коефіцієнтів Котеса в формулу (2.3.1), отримуємо квадратурну формулу, яка називається „формулою Симпсона” або „формулою парабол”:

(2.3.2)

Рис.2.7 Геометричне тлумачення „формули парабол"

Назва квадратурної формули (2.3.2) як „формула парабол" випливає з геометричного тлумачення інтеграла, якщо криву замінити параболою, що проходить через три точки (на рис.2.7 парабола показана пунктиром) і наближене значення інтеграла обчислювати як площу криволінійної трапеції, яка зверху обмежена графіком цієї параболи.

Знайдемо залишковий член квадратурної формули Симпсона. Для цього з наближеної рівності (2.3.2) запишемо формулу для похибки

(2.3.3)

Розкладемо функцію у ряд Тейлора в околі точки , припускаючи функцію такою, що розкладання можливе:

Знайдемо точне значення інтеграла:

(2.3.4)

Тепер знаходимо

(2.3.5)

Підставимо (2.3.3) і (2.3.5) у праву частину рівності (2.3.4):

Отже похибка квадратурної формули Симпсона може бути записана у вигляді

(2.3.6)

З формули (2.3.6) видно, що алгебраїчний степінь точності квадратурної формули Симпсона дорівнює трьом, тобто ця формула має підвищений степінь точності.

Формулу Симпсона також можна застосовувати не до всього відрізка інтегрування, а до окремих його частин. Для цього поділимо відрізок на частин рівної довжини кожний, як показано на рисунку (2.8)

Рис.2.8 Геометричне тлумачення формули Симпсона

Візьмемо -й подвоєний відрізок, функцію проінтегруємо на цьому відрізку, використовуючи квадратурну формулу (2.3.1) з похибкою (2.3.5)

.

Просумувавши інтеграли за всіма подвоєними відрізками, добудемо узагальнену формулу Сімпсона

Якщо прийняти умову, що відстань між будь-якими двома сусідніми вузлами однакові і дорівнює , то останню формулу можна переписати в більш простому вигляді

Тепер запишемо окремо узагальнену формулу Сімпсона та її похибку

(2.3.7)

Страницы: 1 2 3

Рекомендуємо почитати:

Розвиток творчих здібностей учнів в гуртках образотворчого мистецтва
Педагогічний аналіз занять у гуртках для учнів 5-7 класах, позакласних вихованих заходів, психолого-педагогічне тестування учнів та батьків цих вихованців, співбесіди з колегами по роботі, ...

Роль і місце дидактичних ігор на уроках математики
Дидактичні ігри на уроках математики можна використовувати для ознайомлення дітей з новим матеріалом та для його закріплення, для повторення раніше набутих уявлень і понять, для повнішого і ...

Логарифмічні нерівності
Розв’язуючи логарифмічні нерівності, доцільно використати загальну схему рівносильних перетворень нерівностей. Ця схема іноді дає надмірну систему обмежень, яку можна суттєво спростити. Для ...

Викладання іноземної мови

Викладання іноземної мови

У ДНЗ навчання дітей англійської мови доцільно розпочинати з п'ятилітнього віку. Більшість дітей цього віку досягають інтелектуальної, вольової, мотиваційної та емоційної готовності вивчати другу мову у колективі. >>>

Copyright © 2019 - All Rights Reserved - www.edudirect.net