Чисельні методи інтегрування

Нова педагогіка » Розробка учбового матеріалу для викладання вищої математики на тему "Наближені методи обчислення визначених інтегралів" » Чисельні методи інтегрування

Заработок на криптовалютах по сигналам. Больше 100% годовых!

Заработок на криптовалютах по сигналам

Трейдинг криптовалют на полном автомате по криптосигналам. Сигналы из первых рук от мощного торгового робота и команды из реальных профессиональных трейдеров с опытом трейдинга более 7 лет. Удобная система мгновенных уведомлений о новых сигналах в Телеграмм. Сопровождение сделок и индивидуальная помощь каждому. Сигналы просты для понимания как для начинающих, так и для опытных трейдеров. Акция. Посетителям нашего сайта первый месяц абсолютно бесплатно.

Обращайтесть в телеграм LegionCryptoSupport

Сторінка 1

Метод прямокутників

Нехай є відрізок і нам треба обчислити визначений інтеграл

(2.1 1)

за попередньо представленою загальною квадратурною формулою Н’ютона - Котеса (1.4)

(2.1 2)

де - деякі фіксовані вузли

Найпростіший варіант інтерполяційної квадратурної формули (2.1 2) виникає, коли . У цьому випадку не можна скористатися формулою (1.20), бо коефіцієнт (1.19) при невизначений. Тому, як і при побудові загальної інтерполяційної формули, замінимо підінтегральну функцію інтерполяційним багаточленом нульового степеня, що побудований за єдиним вузлом .

(2.1 3)

при заміні підінтегральної функції (2.1 2) інтерполяційним поліномом нульового степеня, що побудований по єдиному вузлу

(2.1 3)

Знайдемо коефіціент

(2.1 4)

Після інтегрування маємо квадратурну „формулу прямокутника”:

, (2.1 5)

При її називають формулою лівих прямокутників,

При її називають формулою правих прямокутників,

При - центральних (або середніх) прямокутників.

Геометричне тлумачення цієї формули показано на рис 2.1

Рис.2.1 Геометричне зображення „формули прямокутників"

Оцінимо похибку квадратурної формули (2.1 5) за умови, що . За означенням похибки квадратурної формули (2.1 5) маємо

(2.1 6)

Функцію запишемо у вигляді розвинення в ряд Тейлора в околі точки [7]:

(2.1 7)

Проінтегруємо обидві частини рівності (2.1 7) по відрізку

(2.1 8)

Тепер підставимо інтеграл (2.1 8) в (2.1 6)

(2.1 9)

Тепер розглянемо конкретні варіанти вибору точки

При (праві прямокутники): (2.1 10)

При (ліві прямокутники): (2.1 11)

При - (центральні прямокутники): (2.1 12)

З формул (2.1 10), (2.1 11), (2.1 12) видно, що алгебраїчний степінь точності формули центральних прямокутників на 1 вище ніж лівих або правих.

Якщо довжина відрізку велика, то формули прямокутників мають невисоку точність. У цих випадках краще користуватися сумарними формулами прямокутників. Для цього розіб‘ємо відрізок на рівних частин з кроком . Інтеграл шукаємо як суму інтегралів по всіх цих відрізках, тобто

Страницы: 1 2 3

Рекомендуємо почитати:

Професійно-прикладна фізична підготовка як соціально-економічна проблема
Людський чинник є унікальним складним явищем, яке фокусує у собі соціально-політичні, морально-психологічні, економічні, медико-біологічні, морально-правові та інші аспекти науково-технічно ...

Система арифметичних задач у програмі з математики в початковій школі
Основним засобом, який використовується при вивченні математики для формування знань, умінь і навичок учнів, є задачі. Задачі являються засобом реалізації загальноосвітньої, виховної і розв ...

Організація самостійної учбової діяльності молодших школярів творчими вчителями сучасної початкової школи
Розглянемо конкретні приклади самостійного ознайомлення учнів з новим матеріалом на різних уроках. Щоб цей етап навчання пройшов успішно, слід надзвичайно уважно поставитись до змісту підго ...

Викладання іноземної мови

Викладання іноземної мови

У ДНЗ навчання дітей англійської мови доцільно розпочинати з п'ятилітнього віку. Більшість дітей цього віку досягають інтелектуальної, вольової, мотиваційної та емоційної готовності вивчати другу мову у колективі. >>>

Copyright © 2021 - All Rights Reserved - www.edudirect.net