Постановка задачі наближеного інтегрування

Нова педагогіка » Розробка учбового матеріалу для викладання вищої математики на тему "Наближені методи обчислення визначених інтегралів" » Постановка задачі наближеного інтегрування

Сторінка 1

Під чисельним інтегруванням розуміють наближене обчислення визначених інтегралів.

Якщо для функції , визначеної на відрізку , можно знайти первісну функцію, то визначений інтеграл розраховується за формулою функціонального інтегрування (1.1):

(1.1)

Якщо підінтегральна функція має складний аналітичний вираз, або задана таблично, то звичайні методи інтегрування, які вивчаються в математичному аналізі, непридатні, оскільки неможливо побудувати первісну. Тому доводиться обчислювати інтеграли наближено. Формули наближеного обчислення інтегралів називаються квадратурними формулами. Ці формули міняють оператор інтегрування на оператор сумування. Виникаюча при такій заміні похибка називається похибкою квадратурної формули.

Задача чисельного інтегрування функцій полягає в обчисленні визначеного інтеграла за значеннями інтегруємої функції в ряді точок відрізка інтегрування. Функцію заміняємо інтерполюємою функцією , а потім приблизно припускаємо :

(1.2)

Функція повинна бути такою, щоб інтеграл обчислювався безпосередньо. Якщо задана аналітично, то ставимо питання про оцінку похибки формули (1.2).

В загальному вигляді задача чисельного інтегрування може бути викладена наступним чином . Нехай інтеграл, який потрібно визначити, представлено у вигляді

(1.3)

Підінтегральна функція в формулі (1.3) є такою, що не дозволяє в функціональному вигляді отримати первісну функцію.

Цей інтеграл обчислюємо за наближеною квадратурною формулою:

(1.4)

де: функція - визначена і неперервна на інтервалі ;

- вагова функція, яка може мати якісь особливості на відрізку

інтегрування, наприклад, перетворюватись у нескінченість в

деяких точках цього відрізка.

- квадратурні коефіцієнти;

- квадратурні вузли ();

n - довільне число інтервалів всередині відрізку [a,b].

Сума, що стоїть у правій частині наближеної рівності (1.4), називається квадратурною сумою.

Параметри , вибирають так, щоб або похибка квадратурної формули була по можливості мінімальною, або обчислення за формулою (1.4) були достатньо простими. Різні квадратурні формули відрізняються одна від одної способами вибору параметрів ,.

Більшість квадратурних формул базується на заміні підінтегральної функції алгебраїчними багаточленами різного степеня.

Означення: Кажуть, що квадратурна формула (1.4) має алгебраїчний степінь точності , якщо ця наближена формула стає точною на множині всіх алгебраїчних багаточленів не вище -ого степеня.

Це означає, що якщо до наближеної формули (1.4) замість функції підставити будь-який алгебраїчний багаточлен -ого степеня, то наближена рівність (1.4) стає точною, тобто

(1.5)

Страницы: 1 2 3

Рекомендуємо почитати:

Форми і засоби комунікації в Інтернет-середовищі
З психології спілкування певною мірою випадає великий пласт досліджень комунікації, опосередкованої комп’ютерами, Інтернетом. Попри досягненнь у цій галузі американських, інших західних та ...

Особливості та закономірності писемного мовлення
Видатний дослідник А.Р. Лурія в роботі "Нариси психофізіології письма" визначає наступні операції письма. Письмо починається із спонукання, мотиву, завдання. Людина знає, для чого ...

Становлення рівня розвитку виховного колективу в 2 – Б класі СЗОШ №303 на початку експерименту
На початку переддипломної безперервної практики, насамперед, ми були зацікавлені в тому, на якій стадії розвитку перебуває колектив класу. Необхідно було проникнути в духовний світ дітей з ...

Викладання іноземної мови

Викладання іноземної мови

У ДНЗ навчання дітей англійської мови доцільно розпочинати з п'ятилітнього віку. Більшість дітей цього віку досягають інтелектуальної, вольової, мотиваційної та емоційної готовності вивчати другу мову у колективі. >>>

Copyright © 2018 - All Rights Reserved - www.edudirect.net