Абсолютна і відносна похибка наближеного значення числа

Нова педагогіка » Прикладна спрямованість шкільного курсу математики » Абсолютна і відносна похибка наближеного значення числа

Сторінка 1

Значення чисел, якими користуються у практичних розрахунках, бувають точними і наближеними.

Причини появи наближених значень чисел і величин можуть бути різними: неточність методу розв'язування; обмеженість можливостей вимірювальних прикладів тощо. Наприклад, коли кажуть, що відстань від Києва до Чигирина – 220 км, то значення цієї величини не є точним.

Наближені значення отримують також в результаті обчислень, округлень чисел тощо. Наприклад, наближене значення довжини діагоналі прямокутника зі сторонами 5 м і 4 м дорівнює 6,4 м. Його одержали внаслідок округлення числа = ·1,4 є наближеним значенням числа , а 3,14 – наближене значення числа .

Внаслідок округлення отримуємо наближене значення, яке може виявитися більшим (округлення з надлишком.) або меншим (округлення з недостачею) від точного значення.

Наприклад:

а) = 0,333 . = 0,33 – округлили з недостачею;

б) = 0,666 . = 0,67 – округлили з надлишком;

в) = 6,4031242 . = 6,4 – округлили з недостачею;

г) = 0,8333….=0,8 – округлили з недостачею.

Щоб дізнатися, наскільки наближене значення числа відрізняється від точного значення, треба від його точного значення відняти наближене.

Наприклад:

а) – 0,33 = = = ;

б) – 0,67 == = -.

Знак різниці вказує на те, як узято наближене значення – з надлишком чи з недостачею. Різницю між точним значенням числа і його наближеним значенням називають похибкою наближеного значення.

Важливо знати модуль (або, як кажуть, абсолютне значення) цієї різниці, що вказує на відхилення наближеного значення від точного.

Модуль похибки наближеного значення числа називають абсолютною похибкою наближеного значення числа.

Наприклад:

а) = = ;

б) = = .

Постає запитання: як оцінити точність наближеного значення числа або величини?

Передусім важливо назвати число, яке не перевищує абсолютна похибка. На прикладі вимірювання довжини відрізка АВ = а можна показати, що абсолютна похибка наближеного значення довжини не перевищує похибки наближення = 1 см. Проте це груба оцінка. Можна дати точнішу оцінку: = 0,1 см. Це означає, що абсолютна похибка наближеного значення 5,3 довжини x не перевищує 0,1.

Страницы: 1 2

Рекомендуємо почитати:

Актуальні освітянські проблеми сьогодення та напрямки реформування і перспективи вдосконалення вищої школи
Процес реформування вищої освіти в нашій країні відбувається в складних соціально-економічних умовах. Інтелектуальна, політична, соціально-економічна трансформація суспільства, яка здійснює ...

Цілі та зміст навчання монологічного мовлення
Монолог – це безпосередньо спрямований до співрозмовника чи аудиторії організований вид усного мовлення, який передбачає висловлювання однієї особи. Мета формування монологічного мовлення: ...

Особливості дітей-сиріт
Україна — молода незалежна держава, що свідомо обрала шлях реалізації прав дітей, які опинилися в несприятливих умовах. Соціальна політика нашої держави в галузі дитинства покликана сприяти ...

Викладання іноземної мови

Викладання іноземної мови

У ДНЗ навчання дітей англійської мови доцільно розпочинати з п'ятилітнього віку. Більшість дітей цього віку досягають інтелектуальної, вольової, мотиваційної та емоційної готовності вивчати другу мову у колективі. >>>

Copyright © 2019 - All Rights Reserved - www.edudirect.net